Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
2.
J Med Internet Res ; 23(2): e25283, 2021 02 08.
Article in English | MEDLINE | ID: covidwho-1573903

ABSTRACT

BACKGROUND: The COVID-19 outbreak has affected the lives of millions of people by causing a dramatic impact on many health care systems and the global economy. This devastating pandemic has brought together communities across the globe to work on this issue in an unprecedented manner. OBJECTIVE: This case study describes the steps and methods employed in the conduction of a remote online health hackathon centered on challenges posed by the COVID-19 pandemic. It aims to deliver a clear implementation road map for other organizations to follow. METHODS: This 4-day hackathon was conducted in April 2020, based on six COVID-19-related challenges defined by frontline clinicians and researchers from various disciplines. An online survey was structured to assess: (1) individual experience satisfaction, (2) level of interprofessional skills exchange, (3) maturity of the projects realized, and (4) overall quality of the event. At the end of the event, participants were invited to take part in an online survey with 17 (+5 optional) items, including multiple-choice and open-ended questions that assessed their experience regarding the remote nature of the event and their individual project, interprofessional skills exchange, and their confidence in working on a digital health project before and after the hackathon. Mentors, who guided the participants through the event, also provided feedback to the organizers through an online survey. RESULTS: A total of 48 participants and 52 mentors based in 8 different countries participated and developed 14 projects. A total of 75 mentorship video sessions were held. Participants reported increased confidence in starting a digital health venture or a research project after successfully participating in the hackathon, and stated that they were likely to continue working on their projects. Of the participants who provided feedback, 60% (n=18) would not have started their project without this particular hackathon and indicated that the hackathon encouraged and enabled them to progress faster, for example, by building interdisciplinary teams, gaining new insights and feedback provided by their mentors, and creating a functional prototype. CONCLUSIONS: This study provides insights into how online hackathons can contribute to solving the challenges and effects of a pandemic in several regions of the world. The online format fosters team diversity, increases cross-regional collaboration, and can be executed much faster and at lower costs compared to in-person events. Results on preparation, organization, and evaluation of this online hackathon are useful for other institutions and initiatives that are willing to introduce similar event formats in the fight against COVID-19.


Subject(s)
COVID-19/therapy , Delivery of Health Care/organization & administration , Internet , Adult , COVID-19/epidemiology , Humans , SARS-CoV-2/isolation & purification
3.
Nat Commun ; 12(1): 5407, 2021 09 13.
Article in English | MEDLINE | ID: covidwho-1406389

ABSTRACT

Most of the ongoing projects aimed at the development of specific therapies and vaccines against COVID-19 use the SARS-CoV-2 spike (S) protein as the main target. The binding of the spike protein with the ACE2 receptor (ACE2) of the host cell constitutes the first and key step for virus entry. During this process, the receptor binding domain (RBD) of the S protein plays an essential role, since it contains the receptor binding motif (RBM), responsible for the docking to the receptor. So far, mostly biochemical methods are being tested in order to prevent binding of the virus to ACE2. Here we show, with the help of atomistic simulations, that external electric fields of easily achievable and moderate strengths can dramatically destabilise the S protein, inducing long-lasting structural damage. One striking field-induced conformational change occurs at the level of the recognition loop L3 of the RBD where two parallel beta sheets, believed to be responsible for a high affinity to ACE2, undergo a change into an unstructured coil, which exhibits almost no binding possibilities to the ACE2 receptor. We also show that these severe structural changes upon electric-field application also occur in the mutant RBDs corresponding to the variants of concern (VOC) B.1.1.7 (UK), B.1.351 (South Africa) and P.1 (Brazil). Remarkably, while the structural flexibility of S allows the virus to improve its probability of entering the cell, it is also the origin of the surprising vulnerability of S upon application of electric fields of strengths at least two orders of magnitude smaller than those required for damaging most proteins. Our findings suggest the existence of a clean physical method to weaken the SARS-CoV-2 virus without further biochemical processing. Moreover, the effect could be used for infection prevention purposes and also to develop technologies for in-vitro structural manipulation of S. Since the method is largely unspecific, it can be suitable for application to other mutations in S, to other proteins of SARS-CoV-2 and in general to membrane proteins of other virus types.


Subject(s)
SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Angiotensin-Converting Enzyme 2 , Binding Sites , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Protein Binding/drug effects , Protein Conformation , Protein Conformation, beta-Strand , Receptors, Virus/metabolism , Virus Internalization/drug effects
4.
BMC Urol ; 21(1): 50, 2021 Mar 30.
Article in English | MEDLINE | ID: covidwho-1159540

ABSTRACT

OBJECTIVES: To establish the role of BCG instillations in the incidence and mortality of COVID-19. PATIENTS AND METHODS: NMIBC patients in instillations with BCG (induction or maintenance) during 2019/2020 were included, establishing a COVID-19 group (with a diagnosis according to the national registry) and a control group (NO-COVID). The cumulative incidence (cases/total patients) and the case fatality rate (deaths/cases) were established, and compared with the national statistics for the same age group. T-test was used for continuous variables and Fisher's exact test for categorical variables. RESULTS: 175 patients were included. Eleven patients presented CIS (11/175, 6.3%), 84/175 (48.0%) Ta and 68/175 (38.9%) T1. Average number of instillations = 13.25 ± 7.4. One hundred sixty-seven patients (95.4%) had complete induction. Forty-three patients (cumulative incidence 24.6%) were diagnosed with COVID-19. There is no difference between COVID-19 and NO-COVID group in age, gender or proportion of maintenance completed. COVID-19 group fatality rate = 1/43 (2.3%). Accumulated Chilean incidence 70-79 years = 6.3%. Chilean fatality rate 70-79 years = 14%. CONCLUSIONS: According to our results, patients with NMIBC submitted to instillations with BCG have a lower case-fatality rate than the national registry of patients between 70 and 79 years (2.3% vs. 14%, respectively). Intravesical BCG could decrease the mortality due to COVID-19, so instillation schemes should not be suspended in a pandemic.


Subject(s)
Adjuvants, Immunologic/administration & dosage , BCG Vaccine/administration & dosage , COVID-19/epidemiology , Urinary Bladder Neoplasms/drug therapy , Administration, Intravesical , Aged , Aged, 80 and over , Case-Control Studies , Chile , Cohort Studies , Female , Humans , Incidence , Male , Severity of Illness Index , Urinary Bladder Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL